DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps (Neurips 2022 Oral, accept rate ~1.7%)

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, Jun Zhu

Tsinghua University

Denoising Diffusion Probabilistic Models (DDPM)

Learning to gradually denoise (Sohl-Dickstein et al., 2015; Ho et al., 2020;)

Why Diffusion Models?

Diffusion models are simple but effective

- No need to learn an "encoder" q(z|x).
 - VAEs: Learn models by "**searching**" both p_{θ} and q_{ϕ} .
 - Diffusion models: Learn models by "**imitating**" a fixed forward process q.
- Training objective is simple: (MSE loss)

$$\frac{1}{2} \int_0^T \omega(t) \mathbb{E}_{q_0(\boldsymbol{x}_0)} \mathbb{E}_{q(\boldsymbol{\epsilon})} \Big[\|\boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_t, t) - \boldsymbol{\epsilon}\|_2^2 \Big] \mathrm{d}t$$

• Convergence guarantee:

For large enough *T*, the reverse process is indeed Gaussian!

Going to Infinity: Continuous-time Diffusion Models

Score-based Generative Models (Song et al.,2021)

The forward SDE and the reverse SDE has **the same path measure** ("joint distribution").

By estimating the score function

at each time *t*, we can get a generative model from noise distribution to data distribution.

Diffusion Probabilistic Models (Score-based Generative Models)

Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021

Forward SDE (data
$$\rightarrow$$
 noise)

$$\mathbf{x}(0) \qquad \mathbf{d} \mathbf{x}_{t} = f(t)\mathbf{x}_{t} dt + g(t) d\mathbf{w}_{t}, \qquad \mathbf{x}(T) \qquad \mathbf{$$

Continuous Perspective: "Equivalent ODE" of an SDE

Same marginal distribution (Song et al.,2021)

Proposition. (Song, et al, 2021)

Starting from the distribution $q_0(x_0)$, define the distribution through the following SDE at time t as $q_t(x_t)$:

$$\mathrm{d}\boldsymbol{x}_t = \boldsymbol{f}(\boldsymbol{x}_t, t)\mathrm{d}t + g(t)\mathrm{d}\boldsymbol{w}_t$$

Then the following ODE has the same **marginal** distribution $q_t(x_t)$ at each time t:

$$\frac{\mathrm{d}\boldsymbol{x}_t}{\mathrm{d}t} = \boldsymbol{f}(\boldsymbol{x}_t, t) - \frac{1}{2}g(t)^2 \nabla_{\boldsymbol{x}} \log q_t(\boldsymbol{x}_t)$$

Two Types of Diffusion Probabilistic Models

Diffusion SDEs and Diffusion ODEs (Song et al.,2021)

• Diffusion SDEs:

$$d\boldsymbol{x}_t = \left[f(t)\boldsymbol{x}_t + \frac{g^2(t)}{\sigma_t}\boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_t, t)\right] dt + g(t)d\bar{\boldsymbol{w}}_t, \quad \boldsymbol{x}_T \sim \mathcal{N}(\boldsymbol{0}, \tilde{\sigma}^2 \boldsymbol{I}).$$

Sampling by **DDPM** is equivalent to a **first-order** discretization of diffusion SDEs (Song et al.,2021). Sampling by **Analytic-DPM** is also equivalent to discretization of diffusion SDEs.

• Diffusion ODEs:

$$\frac{\mathrm{d}\boldsymbol{x}_t}{\mathrm{d}t} = f(t)\boldsymbol{x}_t + \frac{g^2(t)}{2\sigma_t}\boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_t, t), \quad \boldsymbol{x}_T \sim \mathcal{N}(\boldsymbol{0}, \tilde{\sigma}^2 \boldsymbol{I})$$

Deterministic(No more noises, Generally faster than SDE);

Invertible(The encoded noise can be used for downstream tasks, such as inpainting);

Sampling by **DDIM** is equivalent to a **first-order** discretization of diffusion ODEs (Salimans et al., 2022).

Slow Sampling Speed is (one of) the Most Critical Issues of DPMs

Usually needs at least 100 sequential steps to converge

• Sampling Trajectory of DPMs: gradually denoising from a Gaussian noise.

- Sampling from DPMs need to discretize diffusion SDEs / ODEs, which needs SDE / ODE solvers.
 Generally, ODE solvers converge faster than SDE solvers.
- However, they both need at least **100** sequential steps to converge.

$$\mathrm{d}\boldsymbol{x}_t = \left[f(t)\boldsymbol{x}_t + \frac{g^2(t)}{\sigma_t}\boldsymbol{\epsilon}_\theta(\boldsymbol{x}_t, t)\right]\mathrm{d}t + g(t)\mathrm{d}\bar{\boldsymbol{w}}_t,$$

Diffusion SDE -> SDE solver (200~1000 steps)

$$\frac{\mathrm{d}\boldsymbol{x}_t}{\mathrm{d}t} = f(t)\boldsymbol{x}_t + \frac{g^2(t)}{2\sigma_t}\boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_t, t)$$

Diffusion ODE -> ODE solver (~100 steps)

DPM-Solver: A Training-Free Fast ODE Solver for DPMs

Sampling by DPM-Solver needs only 10~20 steps, without any further training

Solving Diffusion ODEs by Traditional Runge-Kutta Methods The "black-box" assumption ignores known information of diffusion ODEs

$$\frac{\mathrm{d}\boldsymbol{x}_t}{\mathrm{d}t} = f(t)\boldsymbol{x}_t + \frac{g^2(t)}{2\sigma_t}\boldsymbol{\epsilon}_\theta(\boldsymbol{x}_t, t)$$

Given an initial value x_s at time s, the exact solution x_t at time t satisfies:

$$oldsymbol{x}_t = oldsymbol{x}_s + \int_s^t \left(f(au) oldsymbol{x}_ au + rac{g^2(au)}{2\sigma_ au} oldsymbol{\epsilon}_ heta(oldsymbol{x}_ au, au)
ight) \mathrm{d} au$$

A "black-box" $oldsymbol{h}_ heta(oldsymbol{x}_t, t)$

losses known information of f(t) and g(t).

Traditional Runge-Kutta methods (RK45) cannot converge for < 20 steps. (Song et al., 2021)

Observation 1: Exactly Computing the Linear Part

Diffusion ODE has a semi-linear structure

The exact solution x_t at time t:

$$\boldsymbol{x}_{t} = e^{\int_{s}^{t} f(\tau) \mathrm{d}\tau} \boldsymbol{x}_{s} + \int_{s}^{t} \left(e^{\int_{\tau}^{t} f(r) \mathrm{d}r} \frac{g^{2}(\tau)}{2\sigma_{\tau}} \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_{\tau}, \tau) \right) \mathrm{d}\tau$$

Exactly Computed

Observation 2: Simplifying by log-SNR

A simple exponentially weighted integral

 $q_{0t}(\boldsymbol{x}_t|\boldsymbol{x}_0) = \mathcal{N}(\boldsymbol{x}_t \alpha(t) \boldsymbol{x}_0, \sigma^2(t) \boldsymbol{I}),$ signal-to-noise-ratio (SNR): α_t^2 / σ_t^2

Define $\lambda_t \coloneqq \log(lpha_t/\sigma_t)$ (half of log-SNR)

We can prove that:

$$f(t) = \frac{\mathrm{d}\log\alpha_t}{\mathrm{d}t}$$
$$g^2(t) = -2\sigma_t^2 \frac{\mathrm{d}\lambda_t}{\mathrm{d}t}$$

Summary: Exact Solutions of Diffusion ODEs

A very simple formulation

Designing High-Order Solvers for Diffusion ODEs Foundation of DPM-Solver

Based on our analysis, given $\tilde{x}_{t_{i-1}}$ at time t_{i-1} , the exact solution at time t_i is:

$$\boldsymbol{x}_{t_{i-1} \to t_{i}} = \frac{\alpha_{t_{i}}}{\alpha_{t_{i-1}}} \tilde{\boldsymbol{x}}_{t_{i-1}} - \alpha_{t_{i}} \int_{\lambda_{t_{i-1}}}^{\lambda_{t_{i}}} e^{-\lambda} \hat{\boldsymbol{\epsilon}}_{\theta}(\hat{\boldsymbol{x}}_{\lambda}, \lambda) d\lambda$$

$$Taylor expansion:$$

$$\hat{\boldsymbol{\epsilon}}_{\theta}(\hat{\boldsymbol{x}}_{\lambda}, \lambda) = \sum_{n=0}^{k-1} \frac{(\lambda - \lambda_{t_{i-1}})^{n}}{n!} \hat{\boldsymbol{\epsilon}}_{\theta}^{(n)}(\hat{\boldsymbol{x}}_{\lambda_{t_{i-1}}}, \lambda_{t_{i-1}}) + \mathcal{O}((\lambda - \lambda_{t_{i-1}})^{k})$$

$$\boldsymbol{x}_{t_{i-1} \to t_{i}} = \frac{\alpha_{t_{i}}}{\alpha_{t_{i-1}}} \tilde{\boldsymbol{x}}_{t_{i-1}} - \alpha_{t_{i}} \sum_{n=0}^{k-1} \hat{\boldsymbol{\epsilon}}_{\theta}^{(n)}(\hat{\boldsymbol{x}}_{\lambda_{t_{i-1}}}, \lambda_{t_{i-1}}) \int_{\lambda_{t_{i-1}}}^{\lambda_{t_{i}}} e^{-\lambda} \frac{(\lambda - \lambda_{t_{i-1}})^{n}}{n!} d\lambda + \mathcal{O}(h_{i}^{k+1})$$

$$Derivatives Coefficients$$

Observation 3: Exactly Computing the Coefficients By integration-by-parts

Because of the **change-of-variable for** λ , the coefficients can be **analytically computed**:

$$\begin{split} \int_{\lambda_{t_{i-1}}}^{\lambda_{t_i}} e^{-\lambda} \frac{(\lambda - \lambda_{t_{i-1}})^n}{n!} d\lambda &= -\int_{\lambda_{t_{i-1}}}^{\lambda_{t_i}} \frac{(\lambda - \lambda_{t_{i-1}})^n}{n!} d(e^{-\lambda}) \\ &= \left(-\frac{(\lambda - \lambda_{t_{i-1}})^n}{n!} e^{-\lambda} \right) \Big|_{\lambda_{t_{i-1}}}^{\lambda_{t_i}} + \left(\int_{\lambda_{t_{i-1}}}^{\lambda_{t_i}} e^{-\lambda} \frac{(\lambda - \lambda_{t_{i-1}})^{n-1}}{(n-1)!} d\lambda \right) \\ &= \cdots \end{split}$$

Repeatedly applying *n* times of integration-by-parts

Observation 4: Approximating Derivatives without Autograd

A classical way for designing high-order ODE solvers

The high-order derivatives can be approximated by traditional numerical methods, which are similar to designing traditional ODE solvers.

E.g. for the first-order derivative, we can use some intermediate point or previous point x_{S_i} :

$$\hat{\boldsymbol{\epsilon}}_{ heta}^{(1)}(\hat{\boldsymbol{x}}_{\lambda_{t_{i-1}}},\lambda_{t_{i-1}}) pprox \left(rac{\hat{\boldsymbol{\epsilon}}_{ heta}(\hat{\boldsymbol{x}}_{\lambda_{s_i}},\lambda_{s_i}) - \hat{\boldsymbol{\epsilon}}_{ heta}(\hat{\boldsymbol{x}}_{\lambda_{t_{i-1}}},\lambda_{t_{i-1}})}{\lambda_{s_i} - \lambda_{t_{i-1}}}
ight)$$

Only function evaluation for $\hat{\epsilon}_{\theta}$, without applying autograd.

DPM-Solver: Customized Solver for Diffusion ODEs

Reduce the discretization error as much as possible

We only approximate the terms about the neural network, and exactly compute all of the other terms.

DDIM is the first-order DPM-Solver

That's why DDIM works well

For k = 2:

$$\begin{split} \boldsymbol{x}_{t_{i-1} \to t_{i}} &= \frac{\alpha_{t_{i}}}{\alpha_{t_{i-1}}} \tilde{\boldsymbol{x}}_{t_{i-1}} - \alpha_{t_{i}} \boldsymbol{\epsilon}_{\theta}(\tilde{\boldsymbol{x}}_{t_{i-1}}, t_{i-1}) \int_{\lambda_{t_{i-1}}}^{\lambda_{t_{i}}} e^{-\lambda} \mathrm{d}\lambda + \mathcal{O}(h_{i}^{2}) \\ &= \frac{\alpha_{t_{i}}}{\alpha_{t_{i-1}}} \tilde{\boldsymbol{x}}_{t_{i-1}} - \sigma_{t_{i}}(e^{h_{i}} - 1) \boldsymbol{\epsilon}_{\theta}(\tilde{\boldsymbol{x}}_{t_{i-1}}, t_{i-1}) + \mathcal{O}(h_{i}^{2}). \end{split}$$

Denoising Diffusion Implicit Model (**DDIM**, Song et al., 2021)

Therefore, DDIM is the first-order diffusion ODE solver which analytically computes the known terms.

DPM-Solver-2 and DPM-Solver-3

DPM-Solver is the high-order generalization of DDIM

Algorithm 1 DPM-Solver-2.	Algorithm 2 DPM-Solver-3.	
Require: initial value \boldsymbol{x}_{T} , time steps $\{t_{i}\}_{i=0}^{M}$, model $\boldsymbol{\epsilon}_{\theta}$ 1: $\tilde{\boldsymbol{x}}_{t_{0}} \leftarrow \boldsymbol{x}_{T}$ 2: for $i \leftarrow 1$ to M do 3: $s_{i} \leftarrow t_{\lambda} \left(\frac{\lambda_{t_{i-1}} + \lambda_{t_{i}}}{2}\right)$ 4: $\boldsymbol{u}_{i} \leftarrow \frac{\alpha_{s_{i}}}{\alpha_{t_{i-1}}} \tilde{\boldsymbol{x}}_{t_{i-1}} - \sigma_{s_{i}} \left(e^{\frac{h_{i}}{2}} - 1\right) \boldsymbol{\epsilon}_{\theta}(\tilde{\boldsymbol{x}}_{t_{i-1}}, t_{i-1})$ 5: $\tilde{\boldsymbol{x}}_{t_{i}} \leftarrow \frac{\alpha_{t_{i}}}{\alpha_{t_{i-1}}} \tilde{\boldsymbol{x}}_{t_{i-1}} - \sigma_{t_{i}} \left(e^{h_{i}} - 1\right) \boldsymbol{\epsilon}_{\theta}(\boldsymbol{u}_{i}, s_{i})$ 6: end for	$\begin{array}{ll} \text{Argorithm 2 DrW-Solver-5.} \\ \hline \text{Require: initial value } \boldsymbol{x}_{T}, \text{ time steps } \{t_{i}\}_{i=0}^{M}, \text{ model } \boldsymbol{\epsilon}_{\theta} \\ 1: \tilde{\boldsymbol{x}}_{t_{0}} \leftarrow \boldsymbol{x}_{T}, r_{1} \leftarrow \frac{1}{3}, r_{2} \leftarrow \frac{2}{3} \\ 2: \text{for } i \leftarrow 1 \text{ to } M \text{ do} \\ 3: s_{2i-1} \leftarrow t_{\lambda} \left(\lambda_{t_{i-1}} + r_{1}h_{i}\right), s_{2i} \leftarrow t_{\lambda} \left(\lambda_{t_{i-1}} + r_{2}h_{i}\right) \\ 4: \boldsymbol{u}_{2i-1} \leftarrow \frac{\alpha_{s_{2i-1}}}{\alpha_{t_{i-1}}} \tilde{\boldsymbol{x}}_{t_{i-1}} - \sigma_{s_{2i-1}} \left(e^{r_{1}h_{i}} - 1\right) \boldsymbol{\epsilon}_{\theta} (\tilde{\boldsymbol{x}}_{t_{i-1}}, t_{i-1}) \\ 5: \boldsymbol{D}_{2i-1} \leftarrow \boldsymbol{\epsilon}_{\theta} (\boldsymbol{u}_{2i-1}, s_{2i-1}) - \boldsymbol{\epsilon}_{\theta} (\tilde{\boldsymbol{x}}_{t_{i-1}}, t_{i-1}) \\ 6: \boldsymbol{u}_{2i} \leftarrow \frac{\alpha_{s_{2i}}}{\alpha_{t_{i-1}}} \tilde{\boldsymbol{x}}_{t_{i-1}} - \sigma_{s_{2i}} \left(e^{r_{2}h_{i}} - 1\right) \boldsymbol{\epsilon}_{\theta} (\tilde{\boldsymbol{x}}_{t_{i-1}}, t_{i-1}) - \frac{\sigma_{s_{2i}}r_{2}}{r_{1}} \left(\frac{e^{r_{2}h_{i}} - 1}{r_{2}h_{i}} - 1\right) \boldsymbol{D}_{2i-1} \\ 7: \boldsymbol{D}_{2i} \leftarrow \boldsymbol{\epsilon}_{\theta} (\boldsymbol{u}_{2i}, s_{2i}) - \boldsymbol{\epsilon}_{\theta} (\tilde{\boldsymbol{x}}_{t_{i-1}}, t_{i-1}) \\ 8: \tilde{\boldsymbol{x}}_{t_{i}} \leftarrow \frac{\alpha_{t_{i}}}{\alpha_{t_{i}}} \tilde{\boldsymbol{x}}_{t_{i-1}} - \sigma_{t_{i}} \left(e^{h_{i}} - 1\right) \boldsymbol{\epsilon}_{\theta} (\tilde{\boldsymbol{x}}_{t_{i-1}}, t_{i-1}) - \frac{\sigma_{t_{i}}}{r_{2}} \left(\frac{e^{h_{i}} - 1}{h} - 1\right) \boldsymbol{D}_{2i} \end{array}$	
7: return \tilde{x}_{t_M}	9: end for 10: return \tilde{x}_{t_M}	

Comparison with Traditional Runge-Kutta Methods

DPM-Solver is customized for DPMS

Table 1: FID \downarrow on CIFAR-10 for different orders of Runge-Kutta (RK) methods and DPM-Solvers, varying the number of function evaluations (NFE). For RK methods, we evaluate diffusion ODEs w.r.t. both t (Eq. (2.7)) and λ (Eq. (E.1)). We use uniform step size in t for RK (t), and uniform step size in λ for RK (λ) and DPM-Solvers.

Sampling method \setminus NFE	12	18	24	30	36	42	48
RK2 (t)	16.40	7.25	3.90	3.63	3.58	3.59	3.54
RK2 (λ)	107.81	42.04	17.71	7.65	4.62	3.58	3.17
DPM-Solver-2	5.28	3.43	3.02	2.85	2.78	2.72	2.69
RK3 (t)	48.75	21.86	10.90	6.96	5.22	4.56	4.12
RK3 (λ)	34.29	4.90	3.50	3.03	2.85	2.74	2.69
DPM-Solver-3	6.03	2.90	2.75	2.70	2.67	2.65	2.65

Experiments: SOTA Acceleration for Sampling of DPMs Almost converges in 15~20 steps

Sample FID \downarrow , varying number of function evaluations (NFE).

Additional Computation Costs are Neglectable

Because we analytically computes all the known terms

Runtime (second / batch) on a single GPU, varying different NFEs.

Under the same NFE, The computation costs of DDIM and DPM-Solver are almost the same. (Our implementation is even slightly faster than the original DDIM.)

DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, Jun Zhu

Tsinghua University

(Conditional) Guided Sampling by DPMs

Only need to modify the noise prediction model

Classifier guidance:

$$\tilde{\boldsymbol{\epsilon}}_{\theta}(\boldsymbol{x}_{t},t,c) \coloneqq \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_{t},t) - \boldsymbol{s} \cdot \boldsymbol{\sigma}_{t} \nabla_{\boldsymbol{x}_{t}} \log p_{\phi}(c|\boldsymbol{x}_{t},t)$$
Classifier

Classifier-free guidance:

$$\tilde{\boldsymbol{\epsilon}}_{\theta}(\boldsymbol{x}_{t},t,c) \coloneqq \boldsymbol{s} \cdot \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_{t},t,c) + (1-s) \cdot \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_{t},t,\boldsymbol{\varnothing})$$

Unconditional model

The **guidance scale** *s* is usually **large** for improving the condition-sample alignment.

Challenges for Guided Sampling with Large Guidance Scale

Challenge: unstable high-order solvers

DDIM (order = 1) (Song et al., 2021a)

PNDM (order = 2) (Liu et al., 2022b)

DEIS-1 (order = 2) (Zhang & Chen, 2022)

ImageNet 256x256.

Guidance scale is 8.0.

15 function evaluations.

DPM-Solver (order = 2) DPM-Solver-3 (order = 3) (Lu et al., 2022) (Lu et al., 2022)

[†]DDIM (thresholding) (Saharia et al., 2022b)

PM-Solver++ (order = 2 (**ours**)

DPM-Solver++: DPM-Solver for Data Prediction Model

Foundation of DPM-Solver++

$$\boldsymbol{x}_{\theta}(\boldsymbol{x}_t,t) \coloneqq (\boldsymbol{x}_t - \sigma_t \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_t,t)) / \alpha_t$$

Given $\tilde{x}_{t_{i-1}}$ at time t_{i-1} , the exact solution at time t_i is:

Single-Step and Multi-Step Solvers

We provide two types solvers

Algorithm 1 DPM-Solver++(2S).

- **Require:** initial value x_T , time steps $\{t_i\}_{i=0}^M$ and $\{s_i\}_{i=1}^M$, data prediction model x_{θ} .
- 1: $ilde{m{x}}_{t_0} \leftarrow m{x}_T.$
- 2: for $i \leftarrow 1$ to M do
- $3: \quad h_{i} \leftarrow \lambda_{t_{i}} \lambda_{t_{i-1}}$ $4: \quad r_{i} \leftarrow \frac{\lambda_{s_{i}} \lambda_{t_{i-1}}}{h_{i}}$ $5: \quad \boldsymbol{u}_{i} \leftarrow \frac{\sigma_{s_{i}}}{\sigma_{t_{i-1}}} \tilde{\boldsymbol{x}}_{t_{i-1}} \alpha_{s_{i}} \left(e^{-r_{i}h_{i}} 1\right) \boldsymbol{x}_{\theta}(\tilde{\boldsymbol{x}}_{t_{i-1}}, t_{i-1})$ $6: \quad \boldsymbol{D}_{i} \leftarrow (1 \frac{1}{2r_{i}}) \boldsymbol{x}_{\theta}(\tilde{\boldsymbol{x}}_{t_{i-1}}, t_{i}) + \frac{1}{2r_{i}} \boldsymbol{x}_{\theta}(\boldsymbol{u}_{i}, s_{i})$ $7: \quad \tilde{\boldsymbol{x}}_{t_{i}} \leftarrow \frac{\sigma_{t_{i-1}}}{\sigma_{t_{i-1}}} \tilde{\boldsymbol{x}}_{t_{i-1}} \alpha_{t_{i}} \left(e^{-h_{i}} 1\right) \boldsymbol{D}_{i}$
- 8: **end for**
- 9: return \tilde{x}_{t_M}

Algorithm 2 DPM-Solver++(2M).

Require: initial value x_T , time steps $\{t_i\}_{i=0}^M$, data prediction model x_{θ} .

1: Denote
$$h_i \coloneqq \lambda_{t_i} - \lambda_{t_{i-1}}$$
 for $i = 1, \dots, M$.

2:
$$\tilde{\boldsymbol{x}}_{t_0} \leftarrow \boldsymbol{x}_T$$
. Initialize an empty buffer Q .

3:
$$Q \xleftarrow{\text{buffer}} \boldsymbol{x}_{\theta}(\tilde{\boldsymbol{x}}_{t_{0}}, t_{0})$$

4: $\tilde{\boldsymbol{x}}_{t_{1}} \leftarrow \frac{\sigma_{t_{1}}}{\sigma_{t_{0}}} \tilde{\boldsymbol{x}}_{0} - \alpha_{t_{1}} \left(e^{-h_{1}} - 1 \right) \boldsymbol{x}_{\theta}(\tilde{\boldsymbol{x}}_{t_{0}}, t_{0})$
5: $Q \xleftarrow{\text{buffer}} \boldsymbol{x}_{\theta}(\tilde{\boldsymbol{x}}_{t_{1}}, t_{1})$
6: **for** $i \leftarrow 2$ to M **do**
7: $r_{i} \leftarrow \frac{h_{i-1}}{h_{i}}$
8: $\boldsymbol{D}_{i} \leftarrow \left(1 + \frac{1}{2r_{i}} \right) \boldsymbol{x}_{\theta}(\tilde{\boldsymbol{x}}_{t_{i-1}}, t_{i-1}) - \frac{1}{2r_{i}} \boldsymbol{x}_{\theta}(\tilde{\boldsymbol{x}}_{t_{i-2}}, t_{i-2})$
9: $\tilde{\boldsymbol{x}}_{t_{i}} \leftarrow \frac{\sigma_{t_{i}}}{\sigma_{t_{i-1}}} \tilde{\boldsymbol{x}}_{t_{i-1}} - \alpha_{t_{i}} \left(e^{-h_{i}} - 1 \right) \boldsymbol{D}_{i}$

10: If
$$i < M$$
, then $Q \xleftarrow{\text{buffer}} \boldsymbol{x}_{\theta}(\tilde{\boldsymbol{x}}_{t_i}, t_i)$
11: end for

12: return \tilde{x}_{t_M}

Ablation Study

DPM-Solver++ can greatly improve the sample quality for large guidance scale

DPM-Solver-2 (ϵ_{θ} , singelstep)

DPM-Solver++(2S) (x_{θ} , singlestep)

DPM-Solver++(2M) $(x_{\theta}, \text{ multistep, thresholdin})$

DPM-Solver

Example: Stable-Diffusion with DPM-Solver++

Example: Stable-Diffusion with DPM-Solver++

Example: Image Editing by Stable-Diffusion with DPM-Solver++ In only 20 steps

In only **20** steps

Source image: "A bowl of fruits"

Target text: "A bowl of **pears**"

DPM-Solver is Easy to Use

Official code example: discrete-time DPMs

We support both **continuous-time** and **discrete-time** DPMs. Here we take an example for discrete-time DPMs. Code is released at: <u>https://github.com/LuChengTHU/dpm-solver</u> (**Github Stars: 600+**)

1. Define noise schedule by the discrete β_i (defined by the training process of the discrete-time DPM).

ns = NoiseScheduleVP('discrete', betas=betas)

2. Define DPM-Solver by noise prediction model and noise schedule.

dpm_solver = DPM_Solver(model_fn, ns)

3. Sample by DPM-Solver.

x = dpm_solver.sample(x_T, steps=20, order=2, method="multistep", skip_type="time_uniform")

Supported Model Types

https://github.com/LuChengTHU/dpm-solver

We support the following four types of diffusion models. You can set the model type by the argument model_type in the function model_wrapper.

Model Type	Training Objective	Example Paper
"noise": noise prediction model ϵ_{θ}	$E_{x0,\epsilon,t}\left[\omega_1(t) \epsilon_ heta(x_t,t)-\epsilon _2^2 ight]$	DDPM, Stable-Diffusion
"x_start": data prediction model $x_ heta$	$E_{x0,\epsilon,t}\left[\omega_2(t) x_ heta(x_t,t)-x_0 _2^2 ight]$	DALL·E 2
"v": velocity prediction model $v_{ heta}$	$E_{x_{0,\epsilon,t}}\left[\omega_{3}(t) v_{ heta}(x_{t},t)-(lpha_{t}\epsilon-\sigma_{t}x_{0}) _{2}^{2} ight]$	Imagen Video
"score": marginal score function s_{θ}	$\overline{E_{x_{0},\epsilon,t}\left[\omega_{4}(t) \sigma_{t}s_{ heta}(x_{t},t)+\epsilon _{2}^{2} ight]}$	ScoreSDE

Supported Sampling Types

https://github.com/LuChengTHU/dpm-solver

We support the following three types of sampling by diffusion models. You can set the argument guidance_type in the function model_wrapper .

Sampling Type	Equation for Noise Prediction Model	Example Paper
"uncond": unconditional sampling	$ ilde{\epsilon}_{ heta}(x_t,t) = \epsilon_{ heta}(x_t,t)$	DDPM
"classifier": classifier guidance	$ ilde{\epsilon}_{ heta}(x_t,t,c) = \epsilon_{ heta}(x_t,t) - s \cdot \sigma_t abla_{xt} \log q_{\phi}(x_t,t,c)$	ADM, GLIDE
"classifier-free": classifier-free guidance	$ ilde{\epsilon}_{ heta}(x_t,t,c) = s \cdot \epsilon_{ heta}(x_t,t,c) + (1-s) \cdot \epsilon_{ heta}(x_t,t)$	DALL·E 2, Imagen, Stable- Diffusion

Supported Algorithms

https://github.com/LuChengTHU/dpm-solver

Method	Supported Orders	Supporting Thresholding	Remark
DPM-Solver, singlestep	1, 2, 3	Νο	Recommended for unconditional sampling (with order = 3). See this paper.
DPM-Solver, multistep	1, 2, 3	Νο	
DPM-Solver++, singlestep	1, 2, 3	Yes	
DPM-Solver++, multistep	1, 2, 3	Yes	Recommended for guided sampling (with order = 2). See this paper.

DPM-Solver in Diffusers Library

Very easy to use in stable-diffusion

```
from diffusers import StableDiffusionPipeline
from diffusers import DPMSolverMultistepScheduler
steps = 10
scheduler = DPMSolverMultistepScheduler.from_config("./stable-diffusion-v1-5", subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(
    "./stable-diffusion-v1-5",
    scheduler=scheduler,
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
images = pipe(prompt, num_inference_steps=steps, num_images_per_prompt=5).images
for i, image in enumerate(images):
    image.save(f"dpm_{steps}_{i}.png")
```

High Impact of DPM-Solver

DPM-Solver has addressed more and more attentions

Diffusers official account:

Official Stable Diffusion Demos (both v1 and v2). (SDM and Finetuned-SDM)

diffusers @diffuserslib · 19h DPM-Solver++ is a super welcome inclusion!

Using this scheduler you can get amazing quality results for as little as 15-20 steps

Thanks @ChengLu05671218 for contributing your paper to the library 2 -please check out the demo \P

🚯 Cheng Lu @ChengLu05671218 · 22h

Happy to announce that our recent work "DPM-Solver" (Neurips 2022 Oral) and "DPM-Solver++" have been supported by the widely-used diffusion library @diffuserslib! An online demo for DPM-Solver with Stable-Diffusion: huggingface.co/spaces/LuCheng.... Many thanks to @huggingface teams!

Show this thread

Stable Diffusion v1-5

nuggingface.co

Stable Diffusion v1-5 - a Hugging Face Space by runwayml

20 PM · Nov 10, 2022 · Typefully

3 Retweets 18 Likes

Pedro Cuenca

An Qu @hahahahohohe + 11h Latest updates to Finetuned Dffusion app: • new models • Van Gogh by @dal_mack • Dedth((distance)) by @Missecolo

-Redshift (Cinema4D renderer) by @Nitrosocke -Midjourney v4 by @prompthero

• Tx to @ChengLu05671218's new DPMS++ scheduler image generation is now 2 times faster! ~4s to huggingface.co/spaces/anzorq/...

Stable-diffusion-WebUI for:

(the name with "DPM" or "DPM++")

Online Demo for Stable-Diffusion with DPM-Solver

https://huggingface.co/spaces/LuChengTHU/dpmsolver_sdm

• DPM-Solver can generate high-quality samples within only **20-25** steps, and for some samples even within **10-15** steps.

15

512

Summary

• We propose a highly simplified formulation of the exact solutions of diffusion ODEs.

• We propose a customized solver for diffusion ODEs, which can generate high-quality samples in around **10** steps and almost converge in **20** steps.

• Code is released at: <u>https://github.com/LuChengTHU/dpm-solver</u>

• A Chinese tutorial for diffusion models on Zhihu:

