DPM-Solver: A Fast ODE Solver for Diffusion
Probabilistic Model Sampling in Around 10 Steps
(Neurips 2022 Oral, accept rate ~1.7%)

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, Jun Zhu

Tsinghua University

Denoising Diffusion Probabilistic Models (DDPM)

Learning to gradually denoise (Sohl-Dickstein et al., 2015; Ho et al., 2020;)

q(xr|x0) = N(0,1) q(xe|xe—1) = N1 — Bexe_q, ft]) q(%0) = Paata(X)

@ q(xr|xr-1) q(x2]x1) G q(x1|xo) 0

@pe(xT-lle) o pelnlny) < > po (xolx1)

p(xr) = N(0,1) Po(Xe—1]xe) = N (g (xt, t), Zg(xe, 1)) po(Xo)

DPM-Solver 2

Why Diffusion Models?

Diffusion models are simple but effective

* No need to learn an “encoder” g(z|x).
* VAEs: Learn models by “searching” both pg and q.

* Diffusion models: Learn models by “imitating” a fixed forward process q.

 Training objective is simple: (MSE loss)

1 T
5/0 W () Eqq (a0) Eq(e) [HGO(wt,t) — e||§] dt

 Convergence guarantee:

For large enough T, the reverse process is indeed Gaussian!

Going to Infinity: Continuous-time Diffusion Models

Score-based Generative Models (Song et al.,2021)

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

score function
= [f(x,t) - ¢’ (t)&x log p (xﬂ] dt + g(t)dw

Reverse SDE (noise — data)

Score-based Diffusion ODEs

The forward SDE and the reverse
SDE has the same path measure
(“joint distribution”).

By estimating the score function
at each time t, we can get a
generative model from noise
distribution to data distribution.

Diffusion Probabilistic Models (Score-based Generative Models)

Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,2021

Forward SDE (data — noise)
dz; = f(t)z:dt + g(t)dwy,

Reverse SDE (nois¢ — data)

* Transition is a linear Gaussian:

qot (4| x0) = N (z¢|a(t) o, o (t)I),

* Training by denoising;:
1 [T)
2 . w(t)lEqO(:co)lEq(e) [I|€o(wt, t) — e||2] dt

a

DPM-Solver

Continuous Perspective: “Equivalent ODE” of an SDE
Same marginal distribution (Song et al.,2021)

Proposition. (Song, et al, 2021)

Starting from the distribution g (x,), define the distribution through the following
SDE at time t as q;(x;):

dz, = f(x¢, t)dt + g(t)dw:

Then the following ODE has the same marginal distribution g;(x;) at each time t :

da:t

O~ @ t)— 59t Te log gl

Two Types of Diffusion Probabilistic Models

Diffusion SDEs and Diffusion ODEs (Song et al.,2021)

 Diffusion SDEs:
g°(t)

Ot

de; = |f(t)@: + =——e€p(,t) | At + g(t)dw;, @7 ~ N(0,6°I).

Sampling by DDPM is equivalent to a first-order discretization of diffusion SDEs (Song et al.,2021).
Sampling by Analytic-DPM is also equivalent to discretization of diffusion SDEs.

 Diffusion ODEs:

d 2
= o+ LY

> eﬁ(wtat)v LT ~ N(Ové'QI)
t

Deterministic(No more noises, Generally faster than SDE);
Invertible(The encoded noise can be used for downstream tasks, such as inpainting);
Sampling by DDIM is equivalent to a first-order discretization of diffusion ODEs (Salimans et al., 2022).

Slow Sampling Speed is (one of) the Most Critical Issues of DPMs

Usually needs at least 100 sequential steps to converge

« Sampling Trajectory of DPMs: gradually denoising from a Gaussian noise.

e T
Wiaa il R of
- 7 : g

-..‘*"'!\¥K¥¥¥vvva

« Sampling from DPMs need to discretize diffusion SDEs / ODEs, which needs SDE / ODE solvers.
Generally, ODE solvers converge faster than SDE solvers.

* However, they both need at least 100 sequential steps to converge.

) (0

(
de, = [F(t)z, + eg(azt,t)] dt + g(t)dw,, % — e+ 2 (t) €0 (0, 1)
t 20't

\Diffusion SDE -> SDE solver (200~1000 steps)) . Diffusion ODE -> ODE solver (~100 steps)

g°(t)

Ot

DPM-Solver

DPM-Solver: A Training-Free Fast ODE Solver for DPMs

Sampling by DPM-Solver needs only 10~20 steps, without any further training

NFE =10 NFE =15 NFE =20 NFE =100 NFE =10

(a) DDIM (b) DPM-Solver (ours)

DPM-Solver 9

Solving Diffusion ODEs by Traditional Runge-Kutta Methods

The “black-box” assumption ignores known information of diffusion ODEs

2
% = e+ LY

t
20'1; €0 (iBt,)

Given aninitial value x at time s, the exact solution x; at time t satisfies:

Y T

A“black-box” hyg(x¢,1)

losses known information of f(t) and g(t).

Traditional Runge-Kutta methods (RK45) cannot converge for < 20 steps. (Song et al.,2021)

Observation 1: Exactly Computing the Linear Part

Diffusion ODE has a semi-linear structure

2

Linear function

“variation of constants” formula

The exact solution x; attime t :

t 2
z, :[ef: f(T)dTm4_|_ / (efff(r)drg_(T)ee(mﬂT)) dr

20 ;

Exactly Computed

DPM-Solver

11

Observation 2: Simplifying by log-SNR

A simple exponentially weighted integral

t t + 2 T
got(xt|xo) = N(wt[a(tjmo,[az(t)]l), Ty = el F(r)dr g 4 / (efT f(r)dr g_()eo (., 7-)) dr

s 20 ;

. P 9279 .
signal-to-noise-ratio (SNR): o /o'; “change-of-variable” formula

(fromttoA)
Define Ay := log(a /o) (half of log-SNR)

We can prove that: / 't At N /A \
Ty =— Ol e Aég(wx,)\)d)\
(_ dlogay) 5 As

dt

Linear term Nonlinear term
o d A Exactly Computed Exponentially weighted integral

\gz (t) = —207; d—t) \ /

DPM-Solver 12

Summary: Exact Solutions of Diffusion ODEs

A very simple formulation

" - Y N
T, = — s — / e eég(ax, \)dN
Qg s

Linear term Nonlinear term
\ Exactly Computed Exponentially weighted integral /

L

All we need to do is to approximate the exponentially weighted integral.

DPM-Solver

Designing High-Order Solvers for Diffusion ODEs

Foundation of DPM-Solver

Based on our analysis, given X;, attimet;_;, the exact solution at time ¢; is:

At
(0 7T L | PURPIN
mti_l—ﬂii — o - wti_l - ati/ € e(mk7)\)A
i—1 At; 4

Taylor expansion:

k—1

A [A (/_/\ti—l)nAn ~
€o(@r,3) = 3 S () + O - X))
k_]. At' n
O, - A A R ()‘ o)‘ti—)
Lt; 1 —t; = Lt;_y — O, Z eén)(mkti_la)‘ti_l / € A I 1 d/\+0(hf+1)
ati_]_ n—=0 Atz—l mn.
Derivatives Coefficients

DPM-Solver 14

Observation 3: Exactly Computing the Coefficients
By integration-by-parts

Because of the change-of-variable for A, the coefficients can be analytically computed:

At A
t; X — M\ n t; X — M\ n
/ e_’\(ti1) d\| = —/ (ti1) d(e ™)
A\ n! A\ n!

ti—1

Repeatedly applying n times of integration-by-parts

Observation 4: Approximating Derivatives without Autograd

A classical way for designing high-order ODE solvers

The high-order derivatives can be approximated by traditional numerical methods, which
are similar to designing traditional ODE solvers.

E.g. for the first-order derivative, we can use some intermediate point or previous point x,.:
€p ({i:)\si))‘Sz) — € (é)\ti >‘tz'—1)
)\s- —)\t

(2

_1’

~(1)/ A
eé)(m)‘ti_:L’At’i—l) ~
1—1

Only function evaluation for ég,
without applying autograd.

DPM-Solver: Customized Solver for Diffusion ODEs

Reduce the discretization error as much as possible

o, kz_l A(n) [~ Mo A= AL)" k1
Lt; 1—t; = o Lt; 1|~ Ot €y (m)‘ti_l y At € nl dA O(h’z)
ti—1 n=0 At;_q)

Linear term Derivatives Coefficients High-order errors
Exactly Computed Approximated Exactly computed Omitted
(Observation 1) (Observation 4) (Observation 2 & 3)

We only approximate the terms about the neural network,
and exactly compute all of the other terms.

DPM-Solver

17

DDIM is the first-order DPM-Solver

That’s why DDIM works well

Fork = 2:

At

A+ . - ~ ¢ _
Bt = i, — (@i tion) [A+ O
e, 4 At;
o, ~
= 2 — o (M — ea(@r, 1) + O(R)
tz—l

Denoising Diffusion Implicit Model (DDIM, Song et al., 2021)

Therefore, DDIM is the first-order diffusion ODE solver which analytically
computes the known terms.

DPM-Solver-2 and DPM-Solver-3

DPM-Solver is the high-order generalization of DDIM

Algorithm 1 DPM-Solver-2.

Require: initial value ., time steps {t;}},, model €y
I: fi)t(, «— T

2: fori < 1to M do
At; A
3. 8; < 1) (5)

h;

~

(1_.;1. i ~
4: Ui & Ty, , — O, (e 2 — 1) €o(Zy, | ti1)
. = ®t; A4 hi
5: Ty, 5, &y, o, (e —1) eg(us, s;)
6: end for
7: return T,,,

Algorithm 2 DPM-Solver-3.

Require: initial value z7, time steps {t;}£,, model €y
l: &4, < T, 71 %,rg — %
2: fori < 1to M do

3: s2i—1 ¢ tx (At,_, +71hi), s2i « tx (A, +72hi)

4: Woi_1 O::—"_‘l‘i:ti_l — Oy (€M7 — 1) €9(&¢,_,,tiz1)
5: Dy < €g(ugi—1,52i—1) — €o(&¢,_,,ti—1)

6: Ug; aoiz_l &y, — Oy, (€7M — 1) €9(By,_,,ti1) —

7: Dy; < €g(uzi,52i) — €9(&4,_,,ti—1)

8: Ty, a(::_"l Ty, , — Oy, (e’“ - 1) €9(Zy, | tio1) — -+
9: end for

10: return &,

ehi—l . 1

e'l‘zhi _ 1
— 1) Dy; 4

) Dy;

DPM-Solver

19

Comparison with Traditional Runge-Kutta Methods
DPM-Solver is customized for DPMS

Table 1: FID | on CIFAR-10 for different orders of Runge-Kutta (RK) methods and DPM-Solvers, varying the
number of function evaluations (NFE). For RK methods, we evaluate diffusion ODEs w.r.t. both ¢ (Eq. (2.7)) and
A (Eq. (E.I)). We use uniform step size in ¢ for RK (¢), and uniform step size in A for RK (X) and DPM-Solvers.

Sampling method \ NFE 12 18 24 30 36 42 48
RK2 (1) 1640 7.25 390 363 358 359 354
RK2 () 107.81 42.04 17.71 7.65 4.62 358 3.17
DPM-Solver-2 528 343 3.02 285 278 272 2.69
RK3 (%) 4875 21.86 1090 696 522 456 4.12
RK3 (\) 34.29 4.90 350 3.03 285 274 2.69
DPM-Solver-3 6.03 290 275 270 2.67 2.65 2.65

DPM-Solver 20

Experiments: SOTA Acceleration for Sampling of DPMs

Almost converges in 15~20 steps

Sample FID ¢, varying number of function evaluations (NFE).

100.0
—»%— ODE (DPM-SoIver) —»— DPM-Solver —»— DPM-Solver
ODE (RK45) DDPM DDPM
SDE (Euler) 100 4 —»— AnalyticcDDPM 100 4) —»— Analytic-DDPM
—»— SDE (Adaptive) % DDIM *= DDIM
»— Analytic-DDIM »— Analytic-DDIM
a 2 30 —x— PNDM 2 304 x —%— PNDM
10.0 4 . fGGDM | y B S AN FastDPM
0 0 e, \\x »— |t6-Taylor
5.0 4 i >
4.0 4 \@\1 g 61
3.0 4 4] =\, _ 44
2.5 4 ‘ 3
2.0 . . : 3 . . . I . : .
1012 15 20 50 200 1000 1012 15 20 50 200 1000 1012 15 20 50 200 1000
NFE NFE NFE
(a) CIFAR-10 (continuous) (b) CIFAR-10 (discrete) (c) CelebA 64x64 (discrete)
—»— DPM-Solver
—»— DPM-Solver —»— DPM-Solver DDPM
DDPM 100 4 DDPM 100 —%— DDIM
—— Analytic-DDPM —— DDIM .
—»— DDIM 50 - %
10 %~ Analytic-DDIM o
g 70 -x - 1GGDM g
%] 0
40 4 10]
74 4
25 A 5 4 34
4 annzsozzon N)]
%3 31 —— . : :
e ; . . o — ; . . 10 12 15 20 50 100 250
1012 15 20 50 200 1000 10 12 15 20 50 100 250 NFE
NFE NFE

(d) TmageNet 64x64 (discrete) (e) ImageNet 128x128 (discrete) g)etlg)SUN bedroom 256x256 (dis-

DPM-Solver 21

nd / batch)

Runtime (secol

10

Additional Computation Costs are Neglectable

Because we analytically computes all the known terms

—— DDIM 9 w0l T DDIM A —»— DDIM 4 | 7 DDIM
—— DPM-Solver —— DPM-Solver 9504 —— DPM-Solver —— DPM-Solver

Runtime (seco

50 1 —

T
10

20 50 100 10 20 50 100

NFE NFE 10 20 50 100 10 20 50 100

NFE NFE

CIFAR10 32x32 CelebA 64x64 ImageNet 128x128 LSUN bedroom 256x256

Runtime (second / batch) on a single GPU, varying different NFEs.

Under the same NFE, The computation costs of DDIM and DPM-Solver are almost the same.
(Our implementation is even slightly faster than the original DDIM.)

DPM-Solver 22

DPM-Solver++: Fast Solver for Guided Sampling of
Diffusion Probabilistic Models

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, Jun Zhu

Tsinghua University

(Conditional) Guided Sampling by DPMs

Only need to modify the noise prediction model

Classifier guidance:
€o(xt,t,c) == €g(xt,t) —|s|- 0t Vg, logpe(clx:, t)

Classifier-free guidance: Classifier

é@(wtatac) =S/ Gg(ivt,t, C) + (]‘ o 8)) GH(wtata Q)

Unconditional model

The guidance scale s is usually large for improving the condition-sample alignment.

Challenges for Guided Sampling with Large Guidance Scale

Challenge: unstable high-order solvers

ImageNet 256x256.

DIM (order =1) PNDM (order = 2) | DEIS 1 (order = 2) DEIS 2 (order = 3) . .
(Song et al., 2021a) (Liuetal,2022b) (Zhang & Chen,2022) (Zhang & Chen, 2022) Guidance scale is 8.0.

15 function evaluations.

DPM-Solver (order =2) DPM-Solver-3 (order = 3) TDDH\/[(thresholding) DPM Solver++ (order = 2)
(Lu et al., 2022) (Lu et al., 2022) (Saharia et al., 2022b) (ours)

DPM-Solver 25

DPM-Solver++; DPM-Solver for Data Prediction Model

Foundation of DPM-Solver++

. .)) . .’L‘g(wt,t) — (mt —ateg(mt,t))/at
Given X, attimet;_,, the exact solution attime t; is:

Atti
O-tl ~ l A A A
Lt, |—t; = Ty, , + ati/ e wg(al)\,/\)d/\
At

a+.
ti 1 e

Taylor expansion:

v
Mo (A= A"
~ (n) D (N) k+1
L, = mtz , T O, E :213)\ti_17Atz‘—1) € | d)‘+0(hz)
Ot,;_ n.
>‘t7;—1
estimated analytically computed (Appendix A) omitted

DPM-Solver

26

Single-Step and Multi-Step Solvers

We provide two types solvers

Algorithm 2 DPM-Solver++(2M).

Algorithm 1 DPM-Solver++(2S). Req;lg(eie]l;leual value xr, time steps {t;},, data prediction
Require: initial value z7, time steps {t;}%, and {s;}} ,, data 1: Denote h; :==MX;, — A, , fori=1,... M.
prediction model xg. 2: Iy, + x7. Initialize an empty buffer Q).
1: éto — XT. 3. Q buffer - (~
. . 0 wto) tO)
2: fori < 1to M do ~ Oty ~ —h
4: — —Lxy— t—1 t
3: hz <—)‘tz‘ —)\tz'—l mtlb - Tt Lo Aty (6) wg(mtO’ 0)
Uulier ~
b e 50 Q & oy (3, 1)
St ik, . 6: for i <— 2 to M do
5 U; < oo, . mii—l — O, (6 _11) mg(mti_l,ti_l) 7. r; h;‘l_,l
. O @)"“‘9(‘”“—1(’)+ —1%(“ 5:) 8 Dic (1425) @o(@e s tion) = k@l tio)
Ty, ¢ ———Ty, | — oy, (€7 — : 8 o
ta Ot; 1 ti-1 bi ’ 9: Ty, < O-O"tz L, — O, (e_hi —].) DZ
8: end for b1 -
9: return &,,, 10: If i < M, then Q —— xo(&s,,t;)
11: end for

12: return x;,,

DPM-Solver 27

Ablation Study

DPM-Solver++ can greatly improve the sample quality for large guidance scale

50 15 15
0 &\ —»— 1st-order (DDIM) —»— 1st-order (DDIM) ul X --x-- 1st-order (DDIM)
\‘\ ~—— 2nd-order, 5 (DPM-Solver) 7 —— 2nd-order, singlestep (DPM-Solver++) ~-%-= 2nd-order, multistep (DPM-Solver++)
\ 34 X\
304 \ —— 2nd-order, x4 (DPM-Solver++) 134 —— 2nd-order, multistep (DPM-Solver++) 13 Ny —%— t1st-order (DDIM)
\‘\) 12 ‘ —*— T2nd-order, multistep (DPM-Solver++)
\ 12 4 \ %
2, \ 2 aui L

11 A

T - T
10 w 25 50 100 250 10 15 20 25

NFE NFE NFE
(a) From €9 to xy. (b) From singlestep to multistep. (c) Thresholding.

DPM-Solver-2 DPM-Solver++(2S)
(€q, singelstep) (xg, singlestep) (g, multistep, thresholdin)

DPM-Solver 28

Example: Stable-Diffusion with DPM-Solver++

Steps 10

)

42

R
oon By D4
' L

e

o

.‘t;
(A £
>
~
-e ‘e “
~
™. %
X N
&
~
T %
: €
b
L
-
T
D
/‘
.

“,.g‘. o

Example: Image Editing by Stable-Diffusion with DPM-Solver++
In only 20 steps

In only 20 steps

Source image: “A bowl of fruits” Target text: “A bowl of pears”

DPM-Solver

31

DPM-Solver is Easy to Use

Official code example: discrete-time DPMs

We support both continuous-time and discrete-time DPMs. Here we take an example for discrete-time DPMs.
Codeis released at: https://github.com/LuChengTHU/dpm-solver (Github Stars: 600+)

1. Define noise schedule by the discrete ; (defined by the training process of the discrete-time DPM) .

= NoiseScheduleVP('discrete’,

o

2. Define DPM-Solver by noise prediction model and noise schedule.

= DPM_Solver(model_fn,

3. Sample by DPM-Solver.

er=2, method="multistep", skip_type="time_uniform")

Lver.sample(x_T,

DPM-Solver 32

https://github.com/LuChengTHU/dpm-solver

Supported Model Types

https://github.com/LuChengTHU/dpm-solver

We support the following four types of diffusion models. You can set the model type by the argument model_type

in the function model_wrapper .

Model Type
"noise": noise prediction model ¢ Eroet
"x_start": data prediction model 9 = Egqet
"v": velocity prediction model vy Egoet

"score": marginal score function sg Egget

Training Objective

wi(t)
:wz (t)

ws(t)

wa(t)

Ge(wt,t) - €||%]
zo(zt,t) — z0||3]
vg(@4,t) — (are — oo)||3]

O'tSQ(mt, t) =F €| |%]

Example Paper
DDPM, Stable-Diffusion
DALL-E 2
Imagen Video

ScoreSDE

https://github.com/LuChengTHU/dpm-solver

Supported Sampling Types

https://github.com/LuChengTHU/dpm-solver

We support the following three types of sampling by diffusion models. You can set the argument guidance_type

in the function model_wrapper .

Sampling Type Equation for Noise Prediction Model

"uncond": unconditional

€ t) = t
Sampling 60(wt7) 69($t,)

"classifier": classifier guidance €9(xt,t,c) = eg(xt,t) — 5 - 0tV log gp(zt, t, C)

"classifier-free": classifier-free
guidance

&(zt,t,c) = s - €g(zt,t,¢) + (1 — s) - eg(zt,)

Example Paper

DDPM

ADM, GLIDE

DALL-E 2, Imagen, Stable-
Diffusion

https://github.com/LuChengTHU/dpm-solver

Supported Algorithms

https://github.com/LuChengTHU/dpm-solver

S rted S ti
Method s el |r.19 Remark
Orders Thresholding

DPM-Solver, 19 3 No Recommended for unconditional sampling
singlestep . (with order = 3). See this paper.
DPM-Solver,

: 1,2, 3
multistep

DPM-Solver++,

: 1,2, 3
singlestep

DPM-Solver++, 19 3 Recommended for guided sampling (with
multistep . order = 2). See this paper.

DPM-Solver

https://github.com/LuChengTHU/dpm-solver

DPM-Solver in Diffusers Library

Very easy to use in stable-diffusion

from diffusers import StableDiffusionPipeline
from diffusers import DPMSolverMultistepScheduler

= 10
* = DPMSolverMultistepScheduler. from_config("./stable-diffusion-v1-5", A ler="scheduler")

= StableDiffusionPipeline. from_pretrained(
"./stable-diffusion-v1-5",

' ’
.to("cuda")
- "a photo of an astronaut riding a horse on mars"
=5).1mages

1n enumerate(in
je.save(f"dpm_{

DPM-Solver

%

High Impact of DPM-Solver

DPM-Solver has addressed more and more attentions

Diffusers official account:

diffusers
DPM-Solver++ is a super welcome inclusion!

Using this scheduler you can get amazing quality results for as little as 15-
20 steps P

Thanks for contributing your paper to the library @ -
please check out the demo &

@ chengLu

Happy to announce that our recent work "DPM-Solver" (Neurips 2022
Oral) and "DPM-Solver++" have been supported by the widely-used
diffusion library @diffuserslib! An online demo for DPM-Solver with

Stable-Diffusion: huggingface.co/spaces/LuCheng.... Many thanks to
@huggingface teams!

Official Stable Diffusion Demos (both v1 and v2).
(SDM and Finetuned-SDM)

‘g\'\. Pedro Cuenca

) An Qu
b & Latest updates to Finetuned Dffusion app:

» new models

-Van Gogh by

—Redshift (Cinema4D renderer) by
-Midjourney v4 by

Stable Diffusion demo Spaces run twice as fast! How
on Earth?

dopted DPM-Solver++, a new scheduler by
5¢ 8 et al. that gets the job done in

« Txto 's new DPMS++ scheduler image generation is
now 2 times faster! ~4s@

fewer steps.

8s — 4s for 8 images, using JAX on TPU v2-8. ﬁ

Stable Diffusion v1-5

Stable Diffusion vi-5 - a Hugging Face Space by runwayml

DPM-Solver

Stable-diffusion-WebUI for:

(the name with “DPM” or
uDPM_I__I_”)

DreamStudio

& STABLEBOOST

37

Online Demo for Stable-Diffusion with DPM-Solver

https://huggingface.co/spaces/LuChengTHU/dpmsolver sdm

* DPM-Solver can generate high-quality samples within only 20-25 steps, and for
some samples even within 10-15 steps.

Model Options

Stable-Diffusion-v1.4 v .
Negative prompt

eyes, 50mm portrait photography,
hard rim lighting photography-beta - Genera te

DPM-Solver

38

https://huggingface.co/spaces/LuChengTHU/dpmsolver_sdm

Summary

* We propose a highly simplified formulation of the exact solutions of diffusion ODEs.

* We propose a customized solver for diffusion ODEs, which can generate high-quality
samples in around 10 steps and almost converge in 20 steps.

e Codeisreleased at: https://github.com/LuChengTHU/dpm-solver

e A Chinese tutorial for diffusion models on Zhihu:

DPM-Solver 39

https://github.com/LuChengTHU/dpm-solver

