-
SwinGNN: Rethinking Permutation Invariance in Diffusion Models for Graph GenerationQi Yan, Zhengyang Liang, Yang Song, Renjie Liao, Lele Wang2023-07-042023-07-04
-
SaGess: Sampling Graph Denoising Diffusion Model for Scalable Graph GenerationStratis Limnios, Praveen Selvaraj, Mihai Cucuringu, Carsten Maple, Gesine Reinert, Andrew ElliottarXiv 2023. Paper  2023-06-292023-06-29
-
Complexity-aware Large Scale Origin-Destination Network Generation via Diffusion ModelCan Rong, Jingtao Ding, Zhicheng Liu, Yong LiarXiv 2023. Paper  2023-06-082023-06-08
-
A Diffusion Model for Event Skeleton GenerationFangqi Zhu, Lin Zhang, Jun Gao, Bing Qin, Ruifeng Xu, Haiqin Yang2023-05-272023-05-27
-
Confidence-Based Feature Imputation for Graphs with Partially Known FeaturesDaeho Um, Jiwoong Park, Seulki Park, Jin Young Choi2023-05-262023-05-26
-
Spatio-temporal Diffusion Point ProcessesYuan Yuan, Jingtao Ding, Chenyang Shao, Depeng Jin, Yong Li2023-05-212023-05-21
-
Efficient and Degree-Guided Graph Generation via Discrete Diffusion ModelingXiaohui Chen, Jiaxing He, Xu Han, Li-Ping LiuICML 2023. Paper  2023-05-062023-05-06
-
A 2D Graph-Based Generative Approach For Exploring Transition States Using Diffusion ModelSeonghwan Kim, Jeheon Woo, Woo Youn KimarXiv 2023. Paper  2023-04-202023-04-20
-
Two-stage Denoising Diffusion Model for Source Localization in Graph Inverse ProblemsBosong Huang, Weihao Yu, Ruzhong Xie, Jing Xiao, Jin HuangarXiv 2023. Paper  2023-04-182023-04-18
-
Diffusion Probabilistic Models for Graph-Structured PredictionHyosoon Jang, Sangwoo Mo, Sungsoo AhnarXiv 2023. Paper  2023-02-212023-02-21
-
Graph Generation with Destination-Driven Diffusion MixtureJaehyeong Jo, Dongki Kim, Sung Ju HwangarXiv 2023. Paper  2023-02-072023-02-07
-
GraphGUIDE: interpretable and controllable conditional graph generation with discrete Bernoulli diffusionAlex M. Tseng, Nathaniel Diamant, Tommaso Biancalani, Gabriele ScaliaarXiv 2023. Paper  2023-02-072023-02-07
-
DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion ModelsHaomin Wen, Youfang Lin, Yutong Xia, Huaiyu Wan, Roger Zimmermann, Yuxuan LiangarXiv 2023. Paper  2023-01-312023-01-31
-
DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained DiffusionQitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, Junchi YanICLR 2023. Paper  2023-01-232023-01-23
-
GraphGDP: Generative Diffusion Processes for Permutation Invariant Graph GenerationHan Huang, Leilei Sun, Bowen Du, Yanjie Fu, Weifeng Lv2022-12-042022-12-04
-
NVDiff: Graph Generation through the Diffusion of Node VectorsCristian Sbrolli, Paolo Cudrano, Matteo Frosi, Matteo MatteucciarXiv 2022. Paper  2022-11-202022-11-20
-
Fast Graph Generative Model via Spectral DiffusionTianze Luo, Zhanfeng Mo, Sinno Jialin PanarXiv 2022. Paper  2022-11-162022-11-16
-
Diffusion Models for Graphs Benefit From Discrete State SpacesKilian Konstantin Haefeli, Karolis Martinkus, NathanaĆ«l Perraudin, Roger WattenhoferNeurIPS Workshop 2022. Paper  2022-10-042022-10-04
-
DiGress: Discrete Denoising diffusion for graph generationClement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, Pascal FrossardICLR 2023. Paper  2022-09-292022-09-29
-
Permutation Invariant Graph Generation via Score-Based Generative ModelingChenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, Stefano Ermon2020-03-022020-03-02
Counts - 20   Back to
top